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Spatial genomics reveals a high
number and specific location
of B cells in the pancreatic
ductal adenocarcinoma
microenvironment of
long-term survivors
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Background and aim: Only 10% of pancreatic ductal adenocarcinoma (PDAC)

patients survive longer than five years. Factors underlining long-term

survivorship in PDAC are not well understood. Therefore, we aimed to

identify the key players in the tumor immune microenvironment (TIME)

associated with long-term survivorship in PDAC patients.

Methods: The immune-related gene expression profiles of resected PDAC

tumors of patients who survived and remained recurrence-free of disease for

≥36 months (long-term survivors, n=10) were compared to patients who had

survived ≤6 months (short-term survivors, n=10) due to tumor recurrence.

Validation was performed by the spatial protein expression profile of immune

cells using the GeoMx™ Digital Spatial Profiler. An independent cohort of

samples consisting of 12 long-term survivors and 10 short-term survivors,

was used for additional validation. The independent validation was performed

by combining qualitative immunohistochemistry and quantitative protein

expression profiling.

Results: B cells were found to be significantly increased in the TIME of long-

term survivors by gene expression profiling (p=0.018). The high tumor

infiltration of B cells was confirmed by spatial protein profiling in the

discovery and the validation cohorts (p=0.002 and p=0.01, respectively). The

higher number of infiltrated B cells was found mainly in the stromal
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infiltrating lymphocytes; TIME, tumor immune micr

antigen presenting cells; CAFs, cancer-associated fibr
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compartments of PDAC samples and was exclusively found within tumor cells

in long-term survivors.

Conclusion: This is the first comprehensive study that connects the immune

landscape of gene expression profiles and protein spatial infiltration with the

survivorship of PDAC patients. We found a higher number and a specific

location of B cells in TIME of long-term survivors which emphasizes the

importance of B cells and B cell-based therapy for future personalized

immunotherapy in PDAC patients.
KEYWORDS

pancreatic ductal adenocarcinoma, long-term survival, B cells, tumor immune
microenvironment, gene expression, spatial genomics
Introduction

Pancreatic ductal adenocarcinoma (PDAC) is a lethal

malignancy and it is estimated to become the second leading

cause of global cancer-related mortality in the near future (1, 2).

Its annual fatality rates worldwide have become nearly

comparable to its incidence rates (3). Due to its extremely

infiltrative nature and rapid tumor spread, for all stages

combined, only 5-10% of the patients survive for 5 years or

longer. Even patients with early-stage PDAC undergoing surgery

relapse at exceedingly high rates with approximately only 25%

surpassing 5-year survival time (1, 3, 4). So far, current and

emerging treatment strategies have been poorly effective in

prolonging survival for these patients (1). Based on the

accumulating insights into the importance of the immune

system for the outcome of pancreatic cancer patients,

understanding alterations in the immune landscape of PDAC

is essential to establish new personalized immunotherapeutic

approaches to combat this devastating disease (5).

Tumor cells and their surrounding microenvironment

(TME) are closely related and interact constantly (6). The

TME of PDAC consists of fibroblasts, immune cells, pancreatic

stellate cells (PaSCs), adipocytes, and extracellular matrix (ECM)

(7). These cells and structures collectively create desmoplasia in

PDAC (8), which is present in both primary tumors and

metastatic lesions, and compose more than 50% of PDAC

tissue (9). The extremely dense fibrotic desmoplasia prevents

immune cell infiltration and vascularization, thus limiting

exposure to conventional systemic therapy (10–12). One of the

main components of desmoplasia is mesenchymal originating
noma; TILs, Tumor-

oenvironment; APCs,

oblasts; aSMA, alpha

02
cells (cancer-associated fibroblasts (CAFs)). CAFs secrete ECM

proteins like alpha-smooth muscle actin (aSMA), fibronectin,

and various types of collagens (13). In addition, desmoplasia

consists of endothelial cells and epithelial cells that carry

fibroblastic features such as the expression of fibroblast-specific

protein 1 (FSP-1) (14). The desmoplasia in PDAC functions as

the traffic that organizes the penetration of immune cells into

tumor areas (15). Moreover, it plays a crucial role in

tumorigenes i s , and i t i s one of the reasons why

immunotherapy thus far has not met its promise in PDAC

compared to a variety of other malignancies (16, 17). In addition,

myofibroblast depletion has been linked to favorably altering the

composition of the immune infiltrate in the TME of PDAC

stroma (18). Therefore, further characterization of critical

components of the TME could provide a better understanding

and add guidance to overcome therapeutic resistance in PDAC.

The resilience of pancreatic cancer towards currently

available therapeutics is due to various reasons including the

ability of cancerous cells to alter the immune system during

disease progression (5). As PDAC develops, it creates a favorable

tumor immune microenvironment (TIME) that supports the

structure of cancer instead of attacking it (19). The TIME of

PDAC is characterized by high infiltration and activation of

immunosuppressor cells such as myeloid-derived suppressor

cells (MDSC), that orchestrate multiple signaling pathways to

stimulate cancer progression, angiogenesis, and metastasis (20).

The MDSCs inhibit the antitumor immunity via various

mechan i sms inc l ud ing the c ro s s t a l k w i t h o the r

immunosuppressive cell types such as regulatory T cells

(Tregs), M2 differentiated tumor-associated macrophages

(TAMs) and T helper 2 (Th2) differentiated CD4+ T cells (5,

21–24). Tregs infiltration in PDAC tissue is correlated with

advanced and progressed disease (25) and furthermore with

poor outcome (26). They protect tumor cells from attacking

immune cells by the secretion of IL10, and TGF-Beta (25). In
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addition, the balance between inhibitory receptors (CTLA-4,

PD1, BTLA, LAG-3, CD40L) and the co-stimulatory molecules

for T cell function (CD28, OX40, GITR, CD137, CD27) on the

surface of T cells is disturbed in PDAC (27). Therefore, the

immune effector cells like cytotoxic CD8+ T and natural killer

(NK) cells, dendritic cells (DC), T helper 1 (Th1) T cells, and M1

differentiated macrophages that promote anti-tumor activity

seem inactive in PDAC (5, 23, 28).

In a previous study, we described several key changes

including deactivation of immune effector cells and mobilization

of the immunosuppressors in the TIME of pancreatic cancer (5).

However, PDAC is not only characterized by a profound local, but

also by systemic tumor immune suppression associated with early

disease recurrence and poor survival (29). Outlining the critical

components and differences within the TIME in tissue samples of

resected long-term compared to short-term survivors of PDAC

using gene expression and digital spatial profiling has not been

reported before. Investigating the main immune-related cellular

and molecular differences between these two groups will guide

future unique immunotherapeutic approaches in PDAC patients.
Methods

Patients and clinical data

We retrospectively assessed fresh frozen (FF) tumor tissue

samples from patients who underwent resection for

histologically proven PDAC between December 2004 and

December 2016, at the Erasmus MC University Medical

Center (EMC) in Rotterdam, the Netherlands. Patients were

screened for eligibility based on their survival time. We selected

treatment naïve tumors of patients following surgical resection

for their PDAC that remained recurrence-free and survived for

at least 3 years (36 months, long-term survivors). We compared

these tumors to those of patients who survived less than 6

months (short-term survivors) due to tumor recurrence. We

excluded patients who died from postoperative complications

and other causes. Furthermore, patients with neuroendocrine,

duodenal, distal-bile duct, and ampullary carcinoma were

also excluded.

Clinical, histopathological, and laboratory data were

retrieved from the electronic medical records. Information

obtained from pathology reports included: tumor grade (well,

moderate, or poor), lymph node status (positive and negative),

tumor location (head, body, or tail), tumor stage (according to

the AJCC 8th edition), and margin status (radical (R0) vs non-

radical (R1; ¾ 1mm)). From the laboratory data, we collected

baseline cancer antigen (CA) 19-9 (kU/L), carcinoembryonic

antigen (CEA) (ng/ml) and, calculated the systemic immune
Frontiers in Immunology 03
inflammation index (SIII) (29). The study was approved by the

Medical Ethical Committee of EMC (MEC-2020-0252).

Intergroup differences in baseline characteristics (short-term

vs. long-term survivors) on continuous variables were

determined using the non-parametric Mann-Whitney U test,

and categorical data were compared using Fisher’s exact test.

Cancer-specific survival and recurrence-free survival were

calculated from the date of surgery to the date of the event

(death from cancer or recurrence of cancer, respectively). In the

case of no event, the information of the patients was censored at

the date of the last follow-up. Patients were followed according

to the standard of care guidelines (30). Follow-up information

was retrieved through the electronic medical records and by

contacting patients’ general practitioners in the event of missing

information. Significance for statistical tests was inferred at a p-

value of <0.05. All statistical analyses, if not mentioned

otherwise, were performed using SPSS (version 26.0).

To validate our results, an independent cohort of samples

was collected from La Paz University hospital of Madrid.

Formalin-Fixed, Paraffin-Embedded (FFPE) samples of

patients who had the same characteristics as the discovery

cohort, were selected. The study was approved by the Medical

Ethical Committee of the University of Madrid (PI3468). The

overview of the study is presented in (Figure 1).
RNA samples

Fresh Frozen (FF) tumor samples of the included PDAC

patients were sectioned with 5 µM thickness, stained with

hematoxylin and eosin (H&E), and examined by a pathologist

who highlighted the location of the tumor-rich areas. Each

sample was then further sectioned, and a total of 60 µM was

used for RNA isolation using the Fresh Frozen Micro Kit

(QIAGEN, Hilden, Germany) according to the manufacturer’s

protocol. The quality and quantity of RNA samples were

examined using the Agilent 2100 Bioanalyzer (Agilent

Technologies , Santa Clara, Cal i fornia, USA). RNA

concentration was corrected to include the proportion of the

sample that was >300 base pairs.
Targeted gene expression profiling of the
RNA samples

To measure the differences in the immune infiltration, the

nCounter® PanCancer Immune Profiling Panel (NanoString

Technologies, Seattle, WA) was used. This panel consisted of

730 cancer immune-related genes, 40 housekeeping genes, 6

positive and 8 negative controls. RNA samples of 200 ng/5-7 uL
frontiersin.org
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were hybridized to target probes for 17 hours at 65°C. RNA

expression levels were measured using the nCounter® FLEX

Instrument (31). The counting of the genes was done by

scanning 490 Fields Of Views (FOV).
Data analysis of the targeted
gene expression

Gene count data were analyzed using the nSolver™ Analysis

Software (version 4.0) and its nSolver™ Advanced Analysis

module (version 2.0) (www.nanostring.com). The quality

control of the measurements was done according to the

general workflow used in the nSolver™ Analysis Software

(32). The expression levels of the negative controls were used

to determine the detection limit by calculating the average of the

negative control expression plus double the standard deviation.

The expression data were normalized using the most stable

housekeeping genes using the geNorm algorithm (33). The

differentially expressed genes were identified using the

recommended workflow of the nSolver™ Advanced Analysis,

which includes a mixture of negative binomial models,

simplified negative binomial models, or log-linear models

based on the convergence of each gene. Genes were regarded

differentially expressed if the p-value was < 0.05 and the |Fold-

Of-Change (FOC)| > 2.
Frontiers in Immunology 04
Cell type profiling

To identify the immune cell types, candidate marker genes that

define the cell types were tested for their specificity and stable

expression, following our previously described method (34). The

assumption for appropriatemarker genes is that all selected genes for

the same cell type decrease and increase in the same direction. This

was tested by calculating the correlation of determination (R2) and

the slope for each pair of genes within a cell type definition. The gene

pairs with a correlation of determination between 0.4 and 0.6 were

checked separately using scatter plots to calculate their slope. The

slope should be above 0.75 and below 1.25 which is equivalent to

being between 33.75 and 56.25 degrees to indicate high pairwise

similarity (35) between the candidate genes and to be included in the

analysis (Supplementary Table 1). Genes that did not pass the above

criteria were excluded from cell type profiling analysis by changing

the Probe Annotation and cell types contrast matrix in nSolver™

AdvancedAnalysis. Independent two-sample t-tests were conducted

between the short-term and long-term survivors using the cell type

scores calculated in the cell type profiling analysis.

Validation by using the GeoMx™ digital
spatial profiling

FFPE samples of the same PDAC samples used in the

targeted gene expression profile were used for validation in the

GeoMx™ Digital Spatial Profiling analysis. A total of 10 samples
frontiersin.org
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were retrieved (5 samples from long-term and 5 samples from

the short-term survivors). From each sample, one section of

5µM was used to be stained with GeoMx Solid Tumor TME

Morphology Kit Human Protein Compatible (NanoString Item

# 121300301) that contains: Pan-Cytokeratin (PanCK, 647 nm),

alpha-smooth muscle actin (aSMA, 488 nm), CD45 (594 nm).

Nuclear stain CYTO-13 (NanoString Item # 121300303) was

used to detect all cells (532 nm). At the same time, the sections

were incubated with a cocktail of 53 photo-cleavable, oligo-

labeled primary antibodies (the Onco-Immune protein panel: 4-

1BB, aSMA, B7H3, Bcl2, beta-2-microglobulin, CD11c, CD20,

CD127, CD14, CD163, CD25, CD27, CD3, CD34, CD4, CD40,

CD45, CD45RO, CD56, CD66b, CD68, CD8, CD80, CD86,

CTLA4, EpCAM, ER-alpha, FAPa, FoxP3, GITR, GZMB,

fibronectin, Her2/ErbB2, Ox40L, HLA-DR, ICOS, IDO1, Ki-

67, LAG3, MART-1, NY-ESO-1, OX40-L, Pan-Cytokeratin, PD-

1, PD-L1, PD-L2, PR, PTEN, S100b, STING/TMEM173, TIM-3,

and VISTA). The incubation with antibodies was done overnight

according to the manufacturer’s protocol. Afterward, slides were

loaded onto the DSP instrument. Each slide was first scanned to

produce a digital image of tissue morphology based on the

fluorescent markers. Next, the regions of interest (ROI) were

selected which was guided by the morphological markers.

Finally, the photocleaved oligos from the spatially resolved

ROIs were hybridized to the corresponding probes for 17

hours at 65°C and scanned using 280 fields of views (FOV).

Microplates were analyzed using DSP data center software

(www.nanostring.com).
Selection of ROIs

Multiple ROIs were selected based on morphological

markers including tumor-rich ROIs with a high morphological

expression of PanCK, desmoplastic with a high morphological

expression of aSMA, and immune-rich containing a high

expression of CD45. However, some ROIs contained more

than one feature and were therefore relabeled/classified as

“tumor plus desmoplasia” or “desmoplasia plus CD45” ROIs.

In addition, some ROIs contained all features, so they were

categorized as “tumor plus desmoplasia plus CD45”

(Supplementary Figure 1). DNA staining was used to ensure

selecting ROIs that contained cells. The size and the number of

cells included in selected ROIs can vary.
Data analysis of the GeoMx™ DSP

The protein expression data generated by the GeoMx™ DSP

were first normalized for technical variation during

hybridization by using the positive controls included in the

experiment (The External RNA Control Consortium (ERCC)).
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Subsequently, a normalization based on housekeeping genes that

showed a stable expression across all samples (Histone 3 and S6

Ribosomal Protein) was conducted. GAPDH, a third

housekeeping gene, was excluded from being used in

normalization because it was not stably expressed in all ROIs

and all samples (Supplementary Figure 1G). These two

subsequent normalizations enables comparing ROIs of

different size and number of cells to each other. The first

comparison was performed between ROIs that contained

tumor (i.e. tumor, tumor plus desmoplasia, and tumor plus

desmoplasia plus CD45) and ROIs that contained stroma (i.e.

desmoplasia, desmoplasia plus CD45, and CD45) in long-, and

short-survivors separately (Supplementary Figure 1 and

Supplementary Table 2). The non-parametric Mann-Whitney

U test was used to determine differentially expressed proteins.

After that, a correlation analysis using Spearman’s rank-order

correlation was run for all the significant proteins in the tumor-

rich and stromal ROIs aiming to identify immune cell types that

infiltrate together in various areas of PDAC tissue samples based

on the survival of the patients. The correlations were regarded to

be positively significant when the correlation coefficient rho (r) >

0.5, and negatively significant when r < -0.5 (36). Finally, to

identify the cell types that were infiltrated with B cells, a

correlation analysis was performed on all detected proteins in

ROIs that showed high CD20 expression.
Validation using an independent cohort
of samples

A total of 22 FFPE samples were used to confirm our results

(n=12 long-term survival, n=10 short-term survival). Samples

were sectioned (5µm thickness) and stained with Pan-

Cytokeratin antibody that is available in the GeoMx Solid

Tumor TME Morphology Kit Human Protein Compatible

(NanoString Item # 121300301) (PanCK, 647 nm), Nuclear

stain CYTO-13 (NanoString Item # 121300303) was used to

detect all cells (532 nm). Anti-CD20 antibody (Abcam

Recombinant Anti-CD20 antibody [EP459Y] (ab78237) was

labeled with antibody labeling kit from Invitrogen Thermo

Fisher called Alexa Fluor™ 594 Antibody Labeling Kit Item

number A20185 (594 nm). Sectioned samples were hybridized

with the immune cell profiling panel, consisting of 20 antibodies

(PD-1, CD68, HLA-DR, Ki-67, Beta-2-microglobulin, CD11c,

CD20, CD3, CD4, CD45, CD56, CD8, CTLA4, GZMB, PD-L1,

PanCk, SMA, Fibronectin). The panel contains three positive

controls (Ribosomal protein S6, Histone 3, and GAPDH) and

three negative controls (two mouse and one rabbits IgGs) that

were used in each measurement. Samples were prepared

according to the manufacturer’s protocol (NanoString, GeoMx

DSP, Seattle, USA). The GeoMx DSP instrument was used to

perform the measurements and the software (v2.2).
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Results

Clinicopathological characteristics

A total of twenty samples of PDACpatients were included in the

discovery cohort, 10 in the long-term survival group, and 10 in the

short-term survival group. Median cancer-specific survival was 53.1

and4.7months, respectively,whereas themedian time-to-recurrence

was 46.3 and3.7months, respectively. Themain characteristics of the

patients were matched to the best of our ability. There were no

significant differences in age, gender, tumor location, operation

procedure, tumor differentiation, lymph node status (positive vs.

negative),margin status (R0 vs. R1), T-stage (T1-T2 vs. T3), adjuvant

systemic therapy, SIII, CEA, or CA19-9. Baseline clinicopathologic

characteristics are summarized in Supplementary Table 3.

In addition, a total of twenty-two samples ofPDACpatientswere

included in thevalidationcohorts, 12 in the long-termsurvival group,

and 10 in the short-term survival group. Also for these samples, the

main characteristics of the patients were matched to the best of our

ability. The clinicopathologic characteristics of the independent

validation cohort were similar, except for T-stage, to the discovery

cohort of samples and were summarized in Supplementary Table 4.

However, when comparing the short-term survival group to the

short-term survival group, and the long-term survival group to the

long-term survival in the discovery cohort and the validation cohort,

respectively, tumorgradewas found tobe significantlydifferent in the

short-term survival groups.
Thirty-nine immune-related genes were
differentially expressed

Of the 730 immune-related genes, 631 genes were above the

detection threshold (i.e. 21 counts), and 99 of these geneswere found

to be differentially expressed between the two groups (short-term vs.

long-term survivors) with a p-value < 0.05. Thirty-nine genes had |

FOC|>2, among which 14 genes were over-expressed, and 25 genes

were under-expressed in long-term survivors compared to short-

term survivors (SupplementaryTable 5; Figure 2A). Four of theover-

expressedgenes in long-termsurvivorswere related to the functionof

B cells, namely, CR2, CD19, CD79B, and BLNK (Supplementary

Table 5). Only three genes were found to be differentially expressed

genes after multiple corrections, therefore, we presented the

differences between long- and short-term survivals based on

immune cell types.
Higher B cell infiltration was found in
long-term survivors

Based on the cell type profiling, the total infiltration of

immune cells (PTPRC (CD45+)) was comparable between
Frontiers in Immunology 06
long- and short-term survivors (p=0.309, Figure 2B). A

significantly higher B cell score (CD19, CD22, CR2, and

MS4A1 (CD20)) was found in long-term survivors compared

to short-term survivors (p=0.018, Figure 2C). None of the other

cell types were found to be significantly different between the

two groups (Supplementary Figure 2). The higher infiltration of

B cells in long-term survivors was confirmed by using the

GeoMx™ DSP analysis using the FFPE samples corresponding

to the discovery cohort (Table 1). B cells were found to be

significantly higher in the stroma of the long-term survival

samples (p=0.038, Figure 2D). They also were found to be

higher within tumor cells of the same group (p=0.049,

Figure 2E). The comprehensive analysis that included the

desmoplastic and the tumor-rich area showed a significantly

higher infiltration of B cells in the long-term survival group of

samples (p=0.002, Figure 2F).
B cells infiltrated within tumor cells close
to T cells in long-term survivors

Tumor ROIs that expressed high levels of CD20 in long-

term survival showed a high expression of various T cell markers

like CD3, CD4 and CD8 and of HLADR marker that might be

expressed by memory B cells or dendritic cells (DCs) or antigen-

presenting cells (APCs) (Supplementary Table 6). Moreover, the

expression of CD20 was associated with the high expression of

CD34 which is a bone marrow stem cell marker that is expressed

by progenitor cells of blood vessels and stromal tissue and may

reflect the increased number and quality of blood vessel

formation in long-term survivors (37, 38). Furthermore, a

strong correlation between the expressions of CD20 and CD27

(r= 0.752, p<0.001) and Bcl2 (r= 0.734, p<0.001) was found in

tumor areas of long-term survivors, which may reflect a specific

subtype of B cells like memory B cells. All proteins which were

correlated with CD20 expression are summarized in

Supplementary Table 6; Supplementary Figures 3, 4.
Sensitivity analysis of the CD20-rich ROIs

Since we found higher infiltration of CD20-positive cells in

the tumor tissue of the long-term survival group compared to

the short-term survival group, and high correlations were found

between CD20-positive cells and CD3, CD4, and CD8-positive

cells, we examined high CD20-positive ROIs between short and

long-term survival groups. We found that the expression of

CD20 correlates negatively with the expression of aSMA (r=-

0.656, p=0.002) and with fibronectin (r=-0.540, p=0.014) in

long-term survivors. Positive correlations were found between

CD20 and Bcl2 (r=0.695, p=0.001), CD3 (r=0.598, p=0.550),

CD4 (r=0.550, p=0.012), CD8 (r=0.567, p=0.009) and Ki67
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(r=0.558, p=0.011), which confirm our previous findings in the

tumor areas.
Homogeneous infiltration of suppressive
immune cells was found in tumor and
desmoplastic areas of short-term
survivors

Tumor ROIs of short-term survivors revealed a high

expression of molecules correlated with immune suppression

such as PD-1, PD-L1, CTLA4, LAG3, FoxP3, and CD25

compared to long-term survivors (Table 1). The same

suppressive molecules were found to be highly expressed in

desmoplastic areas (Table 2). In addition, the level of aSMA and

FAPa expression was significantly higher in desmoplastic areas

of short-term survivors compared to long-term survivors
Frontiers in Immunology 07
(p=0.001, Table 2; Figures 3A, C). Importantly, our results do

not show differences in the percentage of the desmoplastic areas

between the two groups, it shows differences in the desmoplastic

protein expression levels in very similar sizes of desmoplastic

ROIs in short- and long-term survivors. The comprehensive

analysis that included the desmoplastic and the tumor-rich area

showed the same results (Figures 3B, D). All differentially

expressed and correlated proteins in tumor and stromal areas

are summarized in Supplementary Tables 6, 7.

Interestingly, we found a strong negative correlation

between aSMA and CD20-positive cells (r=-0.749, p<0.001,

Supplementary Table 7) in the stromal ROI of the short-term

survivors. Negative correlations were also found between aSMA

and other immune effector cells such as CD8-positive cells (r=-

0.505, p=0.014, Supplementary Table 7), suggesting that these

effector immune cells are unable to penetrate the stroma of

short-term survivors. On the other hand, immunosuppressive
B C

D E F

A

FIGURE 2

Volcano plot of the differentially expressed genes and Higher B cell scores were found in long-term survivors. (A) Volcano plot of the
differentially expressed genes in the long- compared to short-term survivors of PDAC. Each dot indicates a detected gene. Three genes were
differentially expressed after multiple corrections: CCL26 was overexpressed, and UBC and ISTG were downregulated in long-term survivors.
The dotted line represents p-value < 0.1. (B) The relative abundance of CD45 cells in long and short-term survival samples (Independent two-
sample t-tests). Each dot presents a sample, the line presents the average expression in each group, y-axis presents the relative expression of
CD45 which indicates no significant differences. (C) The score of B cells relative to the total infiltration of CD45+ was found to be significantly
higher in the long-term survival group (Independent two-sample t-tests). Each dot presents a sample, the line presents the average expression
of genes identify B cells relative to CD45 in each group, y-axis present the relative expression of B cells/CD45 which indicates a higher
abundance of B cells in the long-term survival group. The protein counts of B cell (CD20+) were confirmed to be highly expressed in long-term

survivors using the GeoMx™ DSP technology. (D). in the stroma, (E). in between tumor-rich areas and (F). in desmoplastic and tumor-rich areas
combined analysis (non-parametric Mann-Whitney U test). Each dot presents an ROI, the y-axis is the normalized counts of CD20 antibody.
Blue color presents long- and red color present short-term survival samples.
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cells, and receptors such as FoxP3, CTLA4, and PD-L1 were all

positively associated with aSMA. Analyzing CD20-rich areas,

we found similar results in long-term survivors. That is, CD20

was negatively associated with aSMA (r=-0.762, p=0.028),

CTLA4 (r=-0.762, p=0.028), Fibronectin (r=-0.738, p=0.037),

and GZMB (r=-0.810, p=0.015).
Validation of our findings

A higher number of B cells in long-term survivors was

validated using the independent cohort of PDAC samples

(p=0.01, Figure 4A). B cells were found to be exclusively

infiltrated in between tumor cells in the long-term survival

group. The infiltration of B cells in the validation samples was

higher in the desmoplasia area as compared to the tumor-rich

areas. Fluorescent immunohistochemistry of CD20 (B cell

marker) confirmed that B cells infiltrated in desmoplastic areas
Frontiers in Immunology 08
and in between tumor cells in some samples of the long-term

survival group (Figures 4B–E). Of note, we did not find

differences in the tertiary lymphoid structures between the

two groups.
Discussion

Unveiling the complex biology of the TIME in PDAC is

essential for finding novel effective immunotherapeutic targets.

This study highlights the presence of B cells infiltrating the

TIME in tumors of PDAC patients who survived longer than 3

years. B cells were found to be infiltrated in between tumor cells

and we hypothesize that they might be orchestrating essential

immune responses causing the infiltration of other types of

immune cells within the tumors of long-term survivors of

PDAC (Figure 5).
TABLE 1 Comparison of tumor ROIs in the short-term (23) vs. long-term (30) survival group.

PROTEINS MEAN SHORT STD. DEVIATION MEAN LONG STD. DEVIATION P-VALUE

CD20 234.12 540.80 467.81 676.73 0.049399

CD3 1041.42 1011.72 2041.61 1966.48 0.030576

CD34 1109.32 1220.56 1737.00 1099.81 0.011393

CD4 735.96 446.13 1444.55 1284.17 0.035756

CD8 1286.85 1793.04 2754.67 2106.55 0.001537

EPCAM 4814.94 3509.35 7280.00 4231.73 0.022658

HLADR 3854.88 7675.85 4382.50 2965.26 0.024880

PAN CYTOKERATIN 33471.73 25602.47 21493.35 16178.91 0.040771

B41BB 45.33 16.69 38.76 28.02 0.025452

B7H3 2140.52 843.31 1263.33 668.10 0.000499

BETA2MICROGLUBLIN 877.97 371.10 697.93 319.16 0.021613

CD127 956.44 533.72 421.64 162.43 0.000011

CD25 178.19 52.02 124.19 48.79 0.000320

CD66B 687.04 1012.77 314.50 524.17 0.022655

CD80 92.16 44.22 57.90 36.27 0.002495

CTLA4 738.22 552.79 171.89 94.21 2.1538E-8

FAPA 516.50 362.36 154.84 137.64 0.000014

FOXP3 69.41 40.26 33.64 14.19 0.000088

GITR 49.95 22.21 33.61 14.85 0.005557

KI67 4068.24 4943.67 1205.49 1284.28 0.000234

LAG3 31.61 12.74 22.99 8.11 0.011983

GAPDH 32276.460870 15699.606503 13176.806667 6668.252984 7.3035E-7

LIVERARGINASE 207.62 178.43 108.81 82.07 0.002422

OX40L 201.87 128.64 78.84 34.37 0.000003

PD1 115.88 22.01 86.68 30.74 0.001491

PDL1 63.36 16.15 44.15 16.94 0.000218
fro
Higher mean values (absolute counts) indicate higher infiltration in comparison to the other group.
The bold values present the up-regulated proteins in a given group.
The first 7 proteins were up-regulated in long-term survival group ad the rest were up-regulated in short-term survival group.
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The role of B cells in PDAC is not completely understood

(39, 40). There is growing evidence to consider B cells as key

regulators of the tumor-induced immune response (41). B cells

have been shown to be an essential part of tumor-infiltrating

lymphocytes (TILs) infiltration in PDAC (42). The scattering

infiltration of B cells or their organized presence in tertiary

lymphoid structures in PDAC has been associated with

improved survival (43). It has also been shown that pancreatic

cancer infiltrating B cells can recognize mutant KRAS epitopes

and can produce antibodies against KRAS presenting tumor cells

(44). Our results indicated that B cells were found close to T cells

in long-term survivors which might suggest that CD20+ cells

might be acting as APCs. In addition, the associated subset of T

cells in long-term survivors displayed an activated effector

phenotype (high associations to HLA-DR and CD45RO).

These results were achieved when using the GeoMx DSP
Frontiers in Immunology 09
technique that allowed studying the differences in immune

infiltration in a specific location. By using bulk RNA, that was

used in gene expression profile, the differences of T cells and

APCs between long- and short-term survivors were not clear.

Taken together, our results highlight the added value and

importance of spatial biology techniques that enable

understanding the immune regulation at a high level of details.

In the same line of our results, it was shown before that long-

term survival present a unique list of neoantigens which is

associated with a weaker immunosuppressive environment

(more CD8+ T cells, MUC16- and CA125) (45). The data

from the gene expression analysis showed that four of the

over-expressed genes in long-term survivors were associated

with “B cell function”, and none in short-term survivors. The

over-expressed gene CD79B in long-term survivors was

previously shown to function as a heterodimer involved in
TABLE 2 Comparison of stromal ROI’s in the short-term (18) vs. Long-term (34) survival group.

PROTEIN MEAN SHORT STD. DEVIATION MEAN LONG STD. DEVIATION P-VALUE

CD20 219.87 144.22 1171.37 2016.96 0.037773

aSMA 132117.36 72586.74 56723.61 43634.38 0.000222

B41BB 62.72 15.69 51.24 19.55 0.035187

B7H3 2539.79 911.22 1857.21 1105.65 0.016204

CD11c 2679.86 2562.20 4693.02 4895.68 0.039579

CD127 578.43 177.90 408.20 202.25 0.000618

CD14 623.22 347.11 1112.55 690.59 0.000876

CD163 521.70 428.57 985.02 675.14 0.001318

CD25 177.37 33.63 138.71 47.84 0.001505

CD3 1881.55 1342.51 3322.39 2993.45 0.014575

CD34 1391.17 1025.02 2154.74 1529.17 0.025669

CD4 1238.74 714.35 2127.06 1427.09 0.005950

CD56 442.22 218.69 385.16 336.98 0.036034

CD68 4258.12 4154.54 9157.21 11880.80 0.022086

CD8 2140.40 1992.50 4602.11 3717.32 0.000876

CD80 119.94 45.17 76.24 34.81 0.001505

CTLA 4 2530.39 2018.74 357.77 322.27 0.000004

ERalpha 75.37 35.62 97.04 32.26 0.012403

FAPa 677.83 429.86 297.34 200.09 0.000711

FoxP3 79.35 42.15 36.20 15.15 0.000033

GAPDH 24542.27 8249.41 10663.87 7331.43 0.000002

HER2ErbB2 176.04 95.49 108.37 38.96 0.000190

HLADR 3267.98 2025.63 5074.52 2835.21 0.013093

KI67 1360.91 1213.17 893.62 1326.22 0.008411

LAG3 52.21 36.87 37.17 18.83 0.019433

LiverArginase 267.44 279.97 146.90 88.72 0.032753

OX40L 348.33 243.02 168.22 175.31 0.000575

PD1 158.78 38.46 107.58 34.10 0.000054

PDL1 83.91 22.01 58.39 27.63 0.000197

S100b 736.12 715.40 1366.93 1367.72 0.017077

VISTA 399.12 266.00 224.01 103.47 0.012398
fro
Higher mean values (absolute counts) indicate higher infiltration in comparison to the other group.
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signal transduction via the BCR (46). The presence of CD20+

cells and CD8+ cells and their co-localization was shown to

improve antitumor response and was correlated with increased

survival in ovarian cancer, breast cancer, and malignant

melanoma (47–49). These data support the previous finding

that the presence of B cells within the TIME of PDAC is

associated with a favorable prognosis (50). Moreover, they are

active representatives of the TIME in pancreatic cancer

alongside T cells, making them prime candidates for future

(pre) clinical research. To dissect the exact role of B cells

within the TIME of PDAC, the subtypes of B cells such as

regulatory B cells, plasma B cells, and memory cells need to be

further characterized (50, 51).
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Another interestingfinding of this studywas the high expression

ofaSMA in short-term survivors. The changes in the composition of

ECMin short-term survivorsmight be themainbarrier that prevents

TILs to infiltrate near tumor cells (Figures 3, 5), making them

immunologically ‘cold’ tumors. While high-quality neoantigens are

present in PDAC cells (45), they appear to be immune-edited over

time only in long-term survivors (52). Also, the CAFs and the ECM

composition of desmoplastic regions continuously change as cancer

develops (53). There are several types of CAFs in PDAC including

myofibroblastic, inflammatory, and antigen-presenting fibroblasts

(15).The cancer-derivedTransformingGrowthFactor-b (TGF-b) in
PDAC patients plays an important role in converting normal

fibroblasts into myofibroblastic CAFs (54), which produce aSMA,
frontiersin.org
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FIGURE 3

Higher amounts of desmoplastic proteins were found in short-term survivors. (A) The expression of aSMA in the desmoplastic areas,
(B) in the desmoplastic and tumor-rich areas combined. Y-axis is the normalized counts of aSMA antibody. (C) The expression of FAPa proteins
in the desmoplastic areas, (D) in the desmoplastic and tumor-rich areas combined. Y-axis is the normalized counts of FAPa antibody. Each dot
presents an ROI and the line presents the average normalized counts of the antibody in each group. Blue color presents long- and red color
presents short-term survival samples. The two proteins were found to be significantly higher in short- compared to long-term survivors using

the GeoMx™ DSP technology (non-parametric Mann-Whitney U test).
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andfibroblast activationprotein (FAP)(55).Ourdata showthat these

twoproteins are strongly expressedwithin the stromalROIs in short-

compared to long-term survivors (Tables 1, 2; Figure 3). Moreover,

the expression ofaSMA and FAPwas negatively associated with the

infiltration of B- and T cells in short-term survivors. Therefore, we

think that targeting aSMA and FAP CAFs in combination B cell

therapymightbeagoodoption.TGF-bgeneexpressionwas2.4 times

higher in short-term survivors than in long-term survivors. Taken

together, the data of this study hypothesized that the high expression

of TGF-b might be one of the main drivers that induces CAFs to

produce a high quantity of aSMA and FAP that prevent TILs to

infiltrate tumor areas. It is important to highlight that we did not

study the percentage of desmoplastic areas or the tumor stromal

density (TSD) in PDAC tissue samples, like it was performed

previously (56). We rather quantified the desmoplastic-related
Frontiers in Immunology 11
protein expression in ROIs of similar sizes in short- and long-term

survival.HighTSDwas shown to be associatedwith lowermetastasis

and favorable outcome in resectable patients.

Results of this study suggest that treating PDAC can perhaps

be achieved by targeting TGF-b, to reduce the production of

aSMA, in combination with B cell therapy. B cell therapy

remains in its infancy especially in the case of PDAC since its

role has been debatable (43, 57). However, recent studies have

shown adopting certain culture conditions or gene insertion,

costimulatory ligands have been forced into the expression of B

cells in order to increase their immunostimulatory activation

capacity. Also, tumor-specific antigen presentation by ex vivo

antigen loading or by engineering B cells with a B cell receptor

specific to tumor antigens has been improved recently (58, 59).

With the recent expansion of the knowledge of B cells in cancer,
B C

D E

A

FIGURE 4

The expression of B cells in the validation cohort of samples. (A) Significant higher infiltration of B cells was found in the desmoplastic areas of
the long-term survivors, compared to desmoplastic areas of short-term survivors. Infiltration of B cells was found to be higher in desmoplasia
compared to tumor-rich areas in both groups. Each dot represents an ROI, the middle line presents the average of the normalized expression of
CD20 antibody, long-term survivors n=12, short-term survivors n=10. Fluorescent immunohistochemistry staining of PDAC samples (Mixed
Linear Model test). (B) CD20 cells (B cells) infiltrated in-between (within) the tumor cells, (C) and in the desmoplastic areas of long-term survival
PDAC samples. (D) negative staining of CD20 in-between (within) tumor cells, (E) Fewer B cells were found to infiltrate in the desmoplastic
areas of short-term survival PDAC samples. Green color: Pan Cytokeratin, Red color: CD20, blue color: nucleus.
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new therapeutic options are anticipated to grow in the upcoming

years. Previously, targeting stroma in PDAC has been

disappointing (19), however, recent studies showed that CAFs

depletion (using nab-paclitaxel or FAP specific therapies) is

potentially a positive treatment approach. In addition,

reprogramming CAFs into quiescent fibroblasts (using all-

trans retinoic acid (ATRA, STARPAC trial) or vitamin D) has

shown promising results in treating PDAC (15, 60).

Nevertheless, none of these pre-clinical trials showed complete

remission of disease in these patients. Combining B cell therapy

with reprogramming or CAFs depletion might improve the

survival of PDAC patients.

Despite our effort of adding an external validation cohort,

the sample size of the total cohort is one of the major limitations

of our study, which is mainly due to the scarcity of long-term

survivors of PDAC. This could also explain why no major

differences were found in the clinicopathological characteristics

of short-term and long-term survival groups. Furthermore, we

found a difference between tumor grade in the short-term

survivors in the discovery and validation cohort. However, we

believe that this has to do with tumors that were classified as

moderate to poor. Namely, in the discovery cohort, we called

these tumors poorly differentiated tumors. When not using this
Frontiers in Immunology
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classification, there were no differences between the two cohorts.

Conclusions

Our study underlines the importance of B cell infiltration in

tumors of PDAC patients. B cells infiltrated in higher quantities

in stromal areas and were found exclusively intra-epithelial in

long-term survivals of our cohort of samples. The spatial data

revealed that the large presence of B cells was associated with the

infiltration of T cells and APCs. In contrast, not only B cells but

also the diversity of immune cells was much lower in short-term

survivors. In the TME of short-term survivors, the high

expression of aSMA was associated with low diversity and

infiltration of immune cells to tumor areas. Our study

hypothesized potential roads ahead for revolutionizing PDAC

combination treatments with focus on B cells, targeting stromal

reactions, and anti-TGF-b molecules.
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Schematic presentation of the TIME in long- and short-term survivors of PDAC patients.
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SUPPLEMENTARY FIGURE 1

Examples of the various ROIs that were selected in PDAC samples for the

GeoMx™ DSP Legends: (A) An ROI positive for Pan-Cytokeratin,
presenting a tumor area. (B) An ROI positive for aSMA, presenting a

desmoplastic area. (C) An ROI positive for CD45, presenting an
immune-rich area. (D) An ROI positive for Pan-Cytokeratin and aSMA,

presenting an area that combined tumor and desmoplasia. (E) An ROI

positive for aSMA and CD45, presenting an immune-rich desmoplastic
area. (F) An ROI positive for Pan-Cytokeratin, aSMA, and CD45, presenting

an immune-rich tumor and desmoplastic area. Yellow = Pan-Cytokeratin,
green = aSMA, red = CD45+ cells, blue = nucleus DNA. The size of the

ROI and the number of cells included in each ROI varies between the
different selection. The 2-step normalization (data analysis) enables

comparison between ROIs of different sizes. Long exposure settings for

the morphological markers were used to capture low levels of expression
and ensure accurate ROI selection. The intensity of the morphological

markers does not affect the protein expression of the quantified antibias.
The morphological markers are used to guide the selection of ROIs only.

(G) The expression of the three housekeeping genes in all ROIs in PDAC
samples that were measured with the GeoMx™ DSP technology.

SUPPLEMENTARY FIGURE 2

Scores of various types of immune cells in long- and short-term survivors.

Legend: none of the identified immune cell types were found to be
significantly scored between the two groups.

SUPPLEMENTARY FIGURE 3

Heat-maps of the significant proteins correlated with the expression of

CD20 cells in long- compared to short-term survivors. Legend: (A) heat-
map of the significant proteins that show correlation with CD20 in tumor

ROIs in long- and short-term survivors. The expression of CD20 (B cells) is
correlated with CD3, CD4, and CD8 (T cells) ad with HLA-DR (antigen

presenting cells) in tumor areas of long-term survivors. The expression of
CD20 is negatively correlating with CD127, CD25, and FoxP3 (regulatory T

cells) and many other immune checkpoint and regulatory proteins. (B)
heat-map of the significant proteins that show correlation with CD20 in
stromal ROIs in long- and short-term survivors. The expression of CD20

(B cells) is also correlated with CD3, CD4 and CD8 (T cells) and with HLA-
DR (antigen presenting cells) and with CD14, CD163 (monocytes and

myeloid cells) in stromal areas of long-term survivors.

SUPPLEMENTARY FIGURE 4

Dot plots of the most significant proteins correlated with CD20
expression in long term survivors. Legend: (A) Dot plots of the

significantly highly expressed proteins in tumor ROIs in long-term
survivors. (B) Dot plots of the significantly highly expressed proteins in

stromal ROIs in long-term survivors. Each dot presents an ROI, the middle
line presents the average counts of antibodies, y-axis presents the

normalized counts of the specific antibody.
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